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Abstract
Some studies showed that Val66Met polymorphism of brain-derived neurotrophic factor (BDNF) conveys susceptibility to
Alzheimer’s disease (AD) in females only. However, the confounding effects of some risk factors for AD were omitted in these
studies. The aim of this meta-analysis comprising 19 604 patients with AD and 26 333 controls was to reexamine the association
between Val66Met and AD by conditioning the effects of age, sex, and/or apolipoprotein E (APOE) e4 status. In agreement with the
previous meta-analysis, Val66Met was associated with AD in females without confounding adjustment (odds ratio [OR], 1.08; 95%
confidence interval [CI], 1.03-1.14; P¼ .003). Nevertheless, after adjusting for age and APOE e4 status, Val66Met was not associated
with AD in females (OR, 1.02; 95% CI, 0.94-1.11; P¼ .57). This comprehensive meta-analysis with the largest sample size demonstrated
no association could be observed between Val66Met and AD in general or by dividing samples based on sex or APOE e4.
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Introduction

Alzheimer’s disease (AD) is the most common form of

dementia and pathologically characterized by senile plaques,

comprising amyloid b-peptide (Ab), and neurofibrillary tan-

gles, which in turn is consisted of hyperphosphorylated tau.

These pathological changes are accompanied by deficits in

axonal transport and neuronal loss.

Neurotrophins, such as brain-derived neurotrophic factor

(BDNF), can promote the development, regeneration, survival, and

functioning of neurons.1 Reduced BDNF messenger RNA

(mRNA) level and BDNF protein level were observed in cerebral

cortices of patients with AD.2,3 Moreover, BDNF/Tropomyosin

receptor kinase B (TrkB) neurotrophic signaling pathway is selec-

tively decreased in frontal cortex and hippocampus of patients with

AD.4,5 Arancibia et al showed potential protective effect of BDNF

against Ab-induced neurotoxicity in vitro and in vivo.6 Further-

more, social interaction can rescue memory deficit in an AD mouse

model by increasing mRNA and protein levels of BDNF in the

hippocampus.7 Recently, BDNF gene therapy was shown to pre-

vent neuronal degeneration and to stimulate neuronal function in
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patients with AD.8 The body of evidence demonstrates dysfunction

of BDNF is critical in the development of AD and suggests poly-

morphisms of BDNF may confer risk of AD.

Val66Met is a functional single-nucleotide polymorphism

(SNP) of BDNF. G>A substitution at nucleotide 196 of BDNF

results in the Val66-to-Met amino acid change in the human

BDNF protein.9 Since a decade ago, many studies have been

performed to evaluate the association between Val66Met and

AD. Except a few case–control studies that showed either Val

or Met allele of the SNP was associated with AD,10-12 most

studies reported no association.13-15 One recent review argued

that population stratification and uncontrolled gene–gene or

gene–environment interactions were likely to account for the

inconsistency.16 Therefore, these conflicting results may be

ascribed to the omitted confounding factors, such as age, sex,

and apolipoprotein E (APOE) e4, the strongest genetic risk

factor for AD. Furthermore, some studies examined interactive

effects of either sex or APOE e4 with Val66Met,17-20 but the

findings are still mostly negative and conflicting. One probable

explanation is that the results were underpowered and biased by

limited sample sizes.

Fukumoto et al conducted a sex-based meta-analysis on the

association between Val66Met and AD with a large sample size

(4711 cases and 4537 controls).21 They revealed sexually

dimorphic effect of Val66Met in AD—Met allele confers sus-

ceptibility to AD in females but not in males. Recently, 1 study

also reported female-specific effect of Val66Met on suscept-

ibility to AD in 1 of their 2 independent Chinese Han cohorts.20

However, these studies neglected to adjust for other confound-

ing factors for AD, such as age and APOE e4.

In recent years, a few genes were reported to interact with

APOE e4 on AD risk. Jun et al revealed PICALM, 1 of genome-

wide association study (GWAS) identified genes, confers risk

predominantly in APOE e4 noncarriers.22 Reiman et al reported

GAB2 modifies late onset AD risk in APOE e4 carriers only.23

In addition, some other genes have interactive effects with

APOE e4.24 Therefore, it is necessary to evaluate whether

Val66Met can confer AD risk by interacting with APOE e4.

In this study, we incorporated Val66Met data from high-

throughput genotyping data, which is different from ordinary

meta-analysis on polymorphism. This is the first meta-analysis

with the largest sample size to date to comprehensively exam-

ine the association between Val66Met and AD by introducing

age, sex and APOE e4 status as the confounding factors.

Methods

Search Strategy

PubMed and EmBase databases were searched for all pub-

lished case–control association studies of the Val66Met poly-

morphism with AD. Various combination of these search

terms were used: “BDNF,” “brain-derived neurotrophic

factor,” “polymorphism,” “Val66Met,” “rs6265” and

“Alzheimer.” Furthermore, reference list of Val66Met from

the AlzGene database (www.alzgene.org) were referred to.25

Inclusion Criteria

The titles and abstracts of all articles identified by the search

strategy were retrieved for further review. Inclusion criteria for all

potentially relevant articles were (1) diagnosis of AD according to

the Diagnostic and Statistical Manual of Mental Disorders and the

National Institute of Neurological Disorders and Stroke–Alzhei-

mer Diseases and Related Disorders working group criteria,26 (2)

case–control studies reporting genotype or allele frequencies of

the BDNF Val66Met polymorphism in patients with AD and

healthy controls, and (3) genotype frequencies in Hardy-

Weinberg equilibrium (HWE) for the healthy controls (P > .05).

Val66Met Data From High-Throughput Genotyping Data

In this study, we used Val66Met data extracted from case–

control high-throughput genotyping data for AD. Twelve unre-

lated high-throughput genotyping cohorts were collected from

NIA Genetics of Alzheimer’s Disease Data Storage Site (NIA-

GADS). For detailed information on the 12 cohorts from NIA-

GADS, please refer to Supplementary Table. We also collected

genotyping data from Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI; the ADNI database http://www.loni.ucla.edu/

ADNI/).27 The ADNI genotyping data were generated as pre-

viously described We did not include high-throughput genotyp-

ing cohorts of which Val66Met data were imputed.

Data Extraction

Two investigators (Q.Z. and Y.S.) performed the literature

search and reviewed all the results independently. Full articles

were examined for further assessment if the information in the

title or abstract suggested the study is possibly eligible. Data

from each study were extracted independently by 2 investiga-

tors (Y.Z. and L.S.), using a standardized protocol. In case of

disagreement of study inclusion, a third investigator (S.J.) was

involved. The following information were extracted: first

author name, year of publication, ethnicity, sex, presence or

absence of APOE e4, and full genotyping data of Val66Met of

the studied patients. Both S.J. and Y.Q. extracted the Val66Met

data from the high-throughput genotyping cohorts.

Statistical Analysis

We used R package meta (version 4.8-4) to perform the meta-

analysis.28 The odds ratio (OR) and 95% confidence interval (CI)

of AD for the Met allele compared with the Val allele were assessed

in each study using logistic regression. The study-specific ORs

were then pooled with adjustment for study. Between-study hetero-

geneity was examined using the Cochran’s Q-test by calculating

the I2 statistics. A fixed-effects model using the Mantel-Haenszel

method was applied when no statistically significant heterogeneity

was detected. Otherwise, a random effects DerSimonian and Laird

model was applied. For ORs after adjusting for covariates, the

inverse variance weighting is used for pooling.

To explore the possible sex-specific or APOE e4 status-specific

effect of Val66Met polymorphism on AD, 4 subgroups (female,
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male, APOE e4 carrier, and APOE e4 noncarrier) were created.

Pooled OR and 95% CI with or without adjusting for covariates

were calculated for each subgroup after excluding studies of gen-

otype frequencies that are not in HWE in healthy controls.

Sensitivity analysis was performed by sequential exclusion of

individual studies (leave-one-out analysis) for meta-analysis of

total samples and subgroup meta-analyses. Publication bias was

evaluated graphically using funnel plot. Begg’s rank correlation

test was conducted to evaluate the publication bias quantitatively.

Results

Characteristics of Published Studies Included and
High-Throughput Genotyping Cohorts

After literature search and review, 31 published association

studies of AD with Val66Met were included. Characteristics

of the 31 studies are shown in Table 1. Characteristics of the 13

unrelated high-throughput genotyping cohorts genotyped

Val66Met are shown in Table 2. Finally, 19 604 cases and 26

333 controls were included.

Val66Met Polymorphism and AD Risk

For the overall association between Val66Met and AD, phe-

nomenal heterogeneity (I2¼ 43%) was observed across studies

(Supplementary Figure S1). Therefore, random effects meta-

analysis was used. Val66Met was not associated with AD

before (OR ¼ 1.02, 95% CI ¼ 0.97-1.07; P ¼ .40; Supplemen-

tary Figure S1) and after adjusting for age, sex, and APOE e4

status (OR, 1.00; 95% CI, 0.94-1.06; P ¼ .97; Figure 1). Sen-

sitivity analysis showed OR and P value were not statistically

altered after each leave-one-out analysis. Funnel plot and

Begg’s test showed no evidence of publication bias (Supple-

mentary Figure S2).

Interaction Between Val66Met Polymorphism and Sex
on AD Risk

We divided samples into male and female subgroups and

assessed the associations separately between Val66Met and

AD in the 2 subgroups. In agreement with previous meta-

analysis findings,21 Met allele is significantly associated with

Table 1. Characteristics of Included Published Studies.

First Author, Yearreference number Ethnicity Cases/Controls Female (%) Presence of APOE e4 (%)

Bagnoli et al, 200429 Caucasian 128/97 NA NA
Bodner et al, 200530 Caucasian 256/195 NA NA
Combarros et al, 200431 Caucasian 237/218 69.50 37.10
Cozza et al, 200832 Caucasian 251/97 NA NA
Desai et al, 200533 African American 64/45 72.50 NA
Desai et al, 200533 Caucasian 995/671 64.80 NA
Fehér et al, 200934 Caucasian 160/164 NA NA
Fukumoto et al, 201021 Asian 657/525 61.90 NA
Giedraitis et al, 200935 Caucasian 84/385 NA NA
Huang et al, 200736 Caucasian 220/128 NA 52.30
Li et al, 200517 (UCSD)a Caucasian 188/361 57 36.40
Li et al, 200517 (WashU)b Caucasian 388/349 62.80 41.50
Li et al, 200517 (UK)c Caucasian 359/396 70.90 41.60
Li et al, 200837 Caucasian 692/682 NA NA
Li et al, 201720 Asian 715/760 58.23 47.48
Nacmias et al, 200438 Caucasian 83/97 66.10 NA
Reiman et al, 200723 Caucasian 859/551 NA NA
Saarela et al, 200611 Caucasian 97/101 62.60 NA
Ventriglia et al, 20029 Caucasian 130/111 NA NA
Vepsäläinen et al, 200513 Caucasian 372/464 NA NA
Zhang et al, 200639 Caucasian 295/250 NA NA
Akatsu et al et al, 200618 Asian 95/108 70.90 NA
Bian et al, 200540 Asian 203/239 48.20 29.40
He et al, 200714 Asian 513/575 59.70 NA
Matsushita et al, 200510 Asian 487/471 69 NA
Nishimura et al, 200541 Asian 172/275 NA NA
Tsai et al, 200612 Asian 175/189 50.80 NA
Forero et al, 200642 Mixed 101/168 69.90 NA
Lee et al, 200543 Unknown 95/70 60 NA
Pivac et al, 201115 Caucasian 211/402 60.70 NA
Boiocchi et al, 201319 Caucasian 191/408 57.60 NA

Abbreviations: NA, not available; APOE, apolipoprotein E.
aUCSD samples from the University of California, San Diego.
bWashU samples from the Washington University.
cUK samples from Cardiff University, Wales College of Medicine and King’s College London.
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AD in females (OR ¼ 1.08, 95% CI ¼ 1.03-1.14; P ¼ .003;

Supplementary Figure S3) without confounding adjustment.

However, after adjusting for age and APOE e4 status, Met

allele is not associated with AD in females (OR, 1.02; 95%
CI, 0.94-1.11; P ¼ .57; Figure 2A). Met allele is not associated

with AD in males before (OR, 0.96; 95% CI, 0.90-1.02; P ¼
.17; Supplementary Figure S4) and after adjusting for age and

APOE e4 status (OR, 0.94; 95% CI, 0.86-1.04; P ¼ .22; Figure

2B). Sensitivity analysis showed OR and P value were not

statistically altered after each leave-one-out meta-analysis for

each subgroup. Funnel plots and Begg’s tests showed no evi-

dence of publication bias in either female (Supplementary

Figure S5) or male (Supplementary Figure S6) subgroup.

Interaction Between Val66Met Polymorphism and APOE
e4 Status on AD Risk

Likewise, we divided samples into APOE e4 carrier and APOE

e4 noncarrier subgroups and assessed the associations between

Val66Met and AD in the 2 subgroups separately. Val66Met is

Table 2. Characteristics of Included High-Throughput Genotyping Cohorts.

Abbreviated Cohort Namea Ethnicity Cases/Controls Female, % Presence of APOE E4, %

NIA-LOAD Mixed 993/884 62.30 52
ADC1 Caucasian 1574/527 55.30 57.90
ADC2 Caucasian 745/165 54.20 55.10
ADC3 Caucasian 862/618 54.20 40.70
UPITT Mixed 1424/996 63.80 42.20
TGEN II Caucasian 1013/585 54.20 48.50
ROSMAP Caucasian 368/1326 69.10 23.30
WashU1 Caucasian 403/225 58.10 43.60
MIRAGE Caucasian 603/885 59.70 38.90
ACT Unknown 567/1701 57.70 26.10
UMVUMSSM Unknown 1240/1230 62.50 37.90
MAYO Caucasian 841/1253 53.40 42.70
ADNI Mixed 213/347 47 41.60

Abbreviation: APOE, apolipoprotein E.
aCohort full names: NIA-LOAD, National Institute on Aging Genetics Initiative for Late-Onset Alzheimer’s Disease; ADC1, Alzheimer’s Disease Center Dataset
1; ADC2, Alzheimer’s Disease Center Dataset 2; ADC3, Alzheimer’s Disease Center Dataset 3; UPITT, University of Pittsburgh; TGEN II, Translational Genomics
Research Institute II; ROSMAP, Religious Orders Study and Memory and Aging Project; WashU1, Washington University Dataset 1; MIRAGE, Multi Institutional
Research on Alzheimer Genetics Epidemiology; ACT, Adult Changes in Thought; UMVUMSSM, University of Miami (UM), Vanderbilt University (VU) and Mount
Sinai School of Medicine (MSSM); MAYO, Mayonnaise; ADNI, Alzheimer’s Disease Neuroimaging Initiative.

Figure 1. Forest plot of meta-analysis on the association between Val66Met polymorphism and AD after adjusting for age, sex, and APOE e4
status. AD indicates Alzheimer’s disease; APOE, apolipoprotein E.
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not associated with AD in APOE e4 carriers before (OR¼ 1.02,

95% CI ¼ 0.93-1.10; P ¼ .72; Supplementary Figure S7) and

after adjusting for age and sex (OR ¼ 0.97, 95% CI ¼ 0.88-

1.07; P ¼ .56; Figure 3A). Similarly, Val66Met is not associ-

ated with AD in APOE e4 noncarriers before (OR ¼ 1.05, 95%
CI ¼ 0.98-1.12; P ¼ .18; Supplementary Figure S8) and after

adjusting for age and sex (OR ¼ 1.02, 95% CI ¼ 0.94-1.11;

P ¼ .64; Figure 3B). Sensitivity analysis showed OR and

P value were not statistically altered after each leave-one-out

meta-analysis for each subgroup. Funnel plots and Begg’s tests

showed a slight publication bias in APOE e4 noncarrier sub-

group meta-analysis without adjusting for age and sex (Supple-

mentary Figure S9A) but not in APOE e4 noncarrier subgroup

meta-analysis after adjusting for age and sex (Supplementary

Figure S9B). No evidence of publication bias was observed in

APOE e4 carrier subgroup (Supplementary Figure S10).

Discussion

We conducted, for the first time, a comprehensive meta-

analysis to assess the association between the Val66Met of

BDNF and AD by introducing age, sex, and APOE e4 as con-

founding factors. We included published studies and high-

throughput genotyping cohorts with Val66Met data in this

meta-analysis.

Figure 2. Forest plots of subgroup meta-analyses on the associations between Val66Met polymorphism and AD in females (A) and males
(B) after adjusting for age and APOE e4 status. AD indicates Alzheimer’s disease; APOE, apolipoprotein E.
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Neurotrophins, of which BDNF is a member,44 are evolu-

tionarily young and do not exist in invertebrate species.45 The

late evolutionary appearance of neurotrophins suggests that

these molecules are necessary for both the development and

functioning of a more complex nervous system.46,47 Transgenic

mice deficient in either neurotrophins or neurotrophic receptors

can result in neonatal death.45,48

Moreover, BDNF has also emerged as an important regula-

tor of synaptogenesis and synaptic plasticity underlying learn-

ing and memory in adult central nervous system.49 These

evidences demonstrate BDNF is critical in the development

and functioning of nervous system neonatally and in adults.

However, no GWAS signal can be identified in region

encompassing BDNF for neurological or psychiatric diseases,

suggesting variants in region encompassing BDNF could not

disturb its function significantly or their consequences can be

compensated. We hypothesize that fatal variants in region

encompassing BDNF were discriminated against by natural

selection because of its indispensable role in nervous

development.

Biased samplings involving confounding factors may

explain the heterogeneous results in previous association stud-

ies. In the present study, overall meta-analysis assessing asso-

ciation between Val66Met and AD showed an extraordinary

heterogeneity across studies. However, heterogeneity was pro-

foundly reduced after adjusting for age, sex, and APOE e4

Figure 3. Forest plots of subgroup meta-analyses on the associations between Val66Met polymorphism and AD in APOE e4 carriers (A)
and APOE e4 noncarriers (B) after adjusting for age and sex. AD indicates Alzheimer’s disease; APOE, apolipoprotein E.
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status. After subdividing samples based on sex or APOE e4

status, no cross-study heterogeneity was observed even in con-

founding effect-unadjusted subgroup meta-analysis. For female

subgroup meta-analysis, in agreement with the previous meta-

analysis and the recent study on Chinese Han population that

omitted confounding adjustment, 20,21, Met allele was associ-

ated with AD in females without adjusting for covariates. Nev-

ertheless, after adjusting for age and APOE e4 status, Met allele

was not associated with AD in females. It suggests that the

female-specific association between Val66Met and AD identi-

fied in the previous meta-analysis may be ascribed to the

effects of age and APOE e4 status. These facts underlie the

necessity of confounding adjustment for research on Val66Met

and even other polymorphisms in AD.

In conclusion, we showed Val66Met polymorphism was

not associated with and had no sexual or APOE e4 status-

based dimorphic effect on susceptibility to AD. Our study

demonstrates that confounding adjustment is necessary for

research of Val66Met and even other polymorphisms on AD

or AD-related trait.
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